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Data Integration Epochs

90s:
Rise of ETL

90s-00s:
Cleaning, Matching, 
Dedup Algorithms

00s-10s:
Knowledge bases

Web Data Integration

2010s:
Supervised Cleaning
Interactive Cleaning

2018-2022
Deep Learning 

for Data Integration

2022-now
Foundation Models

Agentic AI



The LLM Epoch - Now

Still developing

• New Models come out every few weeks

• A lot of traction with all fields of science

• Reproducibility suffers greatly

Stressful hunt for low-hanging fruits

• There is an LLM angle to nearly any problem

• Very high expectations

Risks and Cost

• Obfuscation of methodology and black box agentic systems

• Intransparent computation costs



Some Anecdotes on how our research was affected

Data Transformation Discovery

• Given a set of input/output examples, identify a 

Data Cleaning

• Detecting and repairing errors

Pipeline Generation

• Given a dataset and a task generate an effective pipeline



Data Transformation Discovery

Programming-by Example (PBE) 
(Rishabh Singh, Sumit Gulwani:

Learning Semantic String Transformations from Examples. Proc. VLDB Endow. 5(8): 740-751 (2012))

• Synthesizes a series of operators to map each input to ist 

output

• Works well for syntactic String transformation

• Can do semantic look-ups in small scope

Search-by-Example (SBE)
(Z. Abedjan, J. Morcos, M. N. Gubanov, I. F. Ilyas, M. Stonebraker, P. Papotti, M. Ouzzani:

Dataxformer: Leveraging the Web for Semantic Transformations. CIDR 2015)

• Find resources that implicitly (tables) or explicitly (code, 

services) represent transformation functions

• Look-up is scalable

• Has difficulties adapting to syntactic transformations

Syntactic transformation

01.01.2025      2025-01-01
12.24.2022      2022-12-24
15.08.2008      2008-08-15

Semantic Transformation

Germany           DE
France                FR
Italy                    IT



Bringing SBE and PBE together

Problems to solve:

• How to design the algorithmic

interaction between the two approaches

and the two search spaces?

• How to tokenize the input/output

values?

GPT3.5 enters the race:

• Asking a model to find associations by 

example works like a charm!

• Renders entire though-process for 

efficient algorithms obsolete

Should we still work on transformation discovery?

YES

Provenance is important
Scalability is important



FlashGPT3 
(G. Verbruggen, V. Le, S. Gulwani: Semantic programming by example with pre-trained models. (OOPSLA): (2021))

Interleaving LLMs with PBE:

• Splits the entire transformation into substrings

• Leverages the LLM as external thesaurus for semantic transformation

• Prefers Syntactic operators over LLM calls. 

• This beats all baselines.

The LLM is invoked to find the association between an entire input String 

and a particular output token.

Two Shortcomings:

• Not every token from an input is relevant, 

• The order of output tokens might get lost



Challenging Example for FlashGPT3

CEO Apple Cook CEO Apple, AAPL Cook
CFO TSLA Taneja CFO Tesla, TSLA Taneja
CTO Amazon Vogels ?

Query LLM to infer “Apple” from 
input string

Append a constant comma

Query LLM to infer “AAPL” from 
input string

FlashGPT3 Workflow

● Prefers syntactic operator over semantic operator
● Uses syntactic operator wherever it is possible,

even if it will add more semantic operators



Our fix to the problem: identify Non-separable tokens

CEO Apple Cook CEO Apple, AAPL Cook
CFO TSLA Taneja CFO Tesla, TSLA Taneja
CTO Amazon Vogels ?

Our solution works for the specific class of interchangable transformations:
● Two values adhere to a one-to-one relationship
● Two types of values appear interchangeably in the input
● A unified pattern involving both types of values with specific order

required for the output



Transformation Discovery: Open Challenges

Scaling is still an issue

• FlashGPT3 reasonably prefers syntactic operators over semantic ones. 

• Main problem still: Large space of programs

Inconsistent input examples

• LLMs are confident

• When you ask them to find associations between inconsistent concepts, they will 

confidently do!

Numeric patterns are still difficult

Opportunities for augmentation via LLMs:

• Treasure trophe for defining transformation tasks.



Data Cleaning

Methods Strengths Weaknesses

Unsupervised

No human intervention required
High precision

Low recall
Limited ability to detect diverse 
error types

Supervised

Effective for single-table error 
detection

Require large labelled datasets

Semi-Supervised

(e.g., Raha*)

Balance manual effort and 
automation
Require fewer labelled examples 
than supervised methods

Still require some labelled data

Detecting errors in tabular data and repairing them.



Semi-Supervised Cleaning
Traditional data cleaning:
• Rule-based
• Requires a lot of training data
Challenges for example-based (few-shot) 
techniques:
• Class imbalance (most of the data is clean) 

impacts sampling
• Samples must cover different error types
• Corrections must include out-of-vocabulary

solutions
• Different modalities of detectors/correctors

Raha for detection:
• Detector-based embedding to distinguish

data point quality
Baran for correction:
• Ensemble of correctors that learn from

corrections and non corrections

Name Address
H 5th Str
Hannah -
Max 7th Street
Chris 9th Str

Name Address
Hannah 5th Street

Name Address
H 5th Str
Hannah -
Max 7th Street
Chris 9th Str

H → Hanna
5th Str → 5th Street
- → 5th Street
9th Str → 9th Street

Dirty Dataset Labeled Examples

Raha & Baran
Detected Errors

Cleaning Rules

SIGMOD’19, PVLDB’20, CIDR’21



In Reality we clean multiple Tables

Processing one table at a time?

Requires rules or training data per table No predefined relationships between tables



Challenges in Extending Raha for 
Multi-Table Error Detection

Error Detection in Raha: A Binary Classification Task – One Classifier per Column

Too many classifiers, high labeling effort

Sharing classifiers

Impossible, schema-dependent features

Sharing labels

When and how?



Sharing Classifiers

Schema-dependent features

Sharing labels

Challenges Matelda’s Solution

When and how?

Organizing the table set:
• By semantic similarity
• By quality similarity

Creating a unified feature space

Multi-Table Error Detection with Matelda
Fatemeh Ahmadi, Marc Speckmann, Malte F. Kuhlmann, Ziawasch Abedjan:
MaTElDa: Multi-Table Error Detection. EDBT 2025: 364-376

Matelda enables label sharing, reducing manual effort. 



Matelda’s Workflow



Step 2: Unifying Feature Space

Goal:
Enable cross-table cell value comparison.
How?

Unifying applies to:
• Pattern violation features
• Functional dependency violation features
Example: Align FDs across tables. 

• FD detectors per column:

• Aggregated FD Signals

• First Column FD.
• Adjacent Columns FD.



Experiments

Matelda outperforms all competitors until a labeling budget of ten labeled tuples per table. 



The Chances with pretrained models and LLMs

Zero-Shot:

• GPT-4 can easily detect spelling issues. 

• Detecting outliers needs a set of clean examples. 

• Semantic errors are doomed to fail

Few-Shot (No real magic here)

• We really need to pick very good samples: Cover all types of errors

• Picking clean and dirty samples for all types of errors is on its own a 

challenge. 

• Danger of overconfident generalization

Fine-Tuning [TableGPT, SIGMOD’24]

• Helps to better understand table structure

• Still cannot generalize across different error patterns



Pipeline Generation

Natural fit for agentic systems

• Given a dataset and a task, assemble an effective pipeline

Table Understanding is at the core of pipeline generation

Given a table and a task:

• Identify the most important areas of the table

• Chain of tables inspired by chain of throughts

• Still not really solved



Our Research Pre-LLM

AutoML

• Given a dataset and a task, assemble an effective

pipeline

More approaches possible:

• SAGA: Genetic algorithms
S. Siddiqi, R. Kern, M. Boehm: SAGA: A Scalable Framework for Optimizing Data 

Cleaning Pipelines for Machine Learning Applications. SIGMOD (2023

• AutoPipeline: RL and Search
J. Yang, Y. He, S. Chaudhuri: Auto-Pipeline: Synthesize Data Pipelines By-Target 

Using Reinforcement Learning and Search. PVLDB 2021

Limitations: Do not generalize well, Need explicit 

training data, limited set of operators



Huge Push towards Semantic Parsing

Semantic Parsing is a simpler problem than ETL pipelines

• Given a dataset and a question: Generate a formal query

Chain of Tables:

• Inspired by chain of thoughts

• Let the LLM generate the query step by step

• Generate next operator, generate paramters of operator



Chain of Tables [Wang et. al., 2024]



Our Experience:

Awesome!

• Let us work it out for: ETL approaches, multi-table QA, Large tables etc.

Reality:

• We could not reproduce the results

• Some ad-hoc few-shot paramters and post-processing needed

• The better the model, the more eager it is to answer right away without proposing an operation

• New models have probably seen the entire benchmark

Operation Set Execution Accuracy (without regex) Execution Accuracy (with regex)

{Direct Query} 26.78% 18.83%

{Select Rows, Direct Query} 17.27% 8.14%

{Select Columns, Direct Query} 30.56% 16.9%

•



Multi-Table Scenario 
(Decide which tables to use)

S3N-Extra: 3 Relevant tables and 2 irrelevant tables per task

Individual
Treatment

Individual
Treatment

Union decision Union first



A lot of space to explore

Our original questions still open:

• ETL approaches

• High accuracy for Multi-table QA 

• Large tables

• Chain of tables is generally inefficient: 2 prompts per step



Lessons learned so far

You see a new paper solving your problem: Take a deep breath. There is no magic. 

There are probably strong assumptions somewhere

• Focus on methodology instead of black box instrumentation

• Let us understand the capabilities of technologies, such as GenAI, table

representation, agentic systems

• There is no meaning in competing against a black-box software stack
such as ChatGPT unless you want to show cost-efficiency (Reviewer 2 
hates this one)



We are going 2 steps back

Let us first see how it can solve simple tasks. 

• Profiling

• What are the error types it covers?

• How does the accuracy of any task deteriorate with increasing number of rows or columns?

Predict row-count Count missing values Count distinct values



Conclusion & Future Directions

Conclusion

• LLMs are still in their infancy regarding tabular data integration

• Useful tool for token-level problems

• Useful as a human interface

• Leverage the generative nature: 

• TRL needs leaps forward

• Spelling errors

• Similarities

• Ask for rules, patterns, heuristics à mostly covers head topics, but still useful

• Ask for augmentation

• Context of a table should be its task


